Brain Image Labeling Using Multi-atlas Guided 3D Fully Convolutional Networks

نویسندگان

  • Longwei Fang
  • Lichi Zhang
  • Dong Nie
  • Xiaohuan Cao
  • Khosro Bahrami
  • Huiguang He
  • Dinggang Shen
چکیده

Automatic labeling of anatomical structures in brain images plays an important role in neuroimaging analysis. Among all methods, multi-atlas based segmentation methods are widely used, due to their robustness in propagating prior label information. However, non-linear registration is always needed, which is time-consuming. Alternatively, the patch-based methods have been proposed to relax the requirement of image registration, but the labeling is often determined independently by the target image information, without getting direct assistance from the atlases. To address these limitations, in this paper, we propose a multi-atlas guided 3D fully convolutional networks (FCN) for brain image labeling. Specifically, multi-atlas based guidance is incorporated during the network learning. Based on this, the discriminative of the FCN is boosted, which eventually contribute to accurate prediction. Experiments show that the use of multi-atlas guidance improves the brain labeling performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Abdominal Organ Segmentation Using Regional Convolutional Neural Networks

A fully automatic system for abdominal organ segmentation is presented. As a first step, an organ localization is obtained via a robust and efficient feature registration method where the center of the organ is estimated together with a region of interest surrounding the center. Then, a convolutional neural network performing voxelwise classification is applied. The convolutional neural network...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study

This study investigates a 3D and fully convolutional neural network (CNN) for subcortical brain structure segmentation in MRI. 3D CNN architectures have been generally avoided due to their computational and memory requirements during inference. We address the problem via small kernels, allowing deeper architectures. We further model both local and global context by embedding intermediate-layer ...

متن کامل

Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound

In this work we analyse the performance of Convolutional Neural Networks (CNN) on medical data by benchmarking the capabilities of different network architectures to solve tasks such as segmentation and anatomy localisation, under clinically realistic constraints. We propose several CNN architectures with varying data abstraction capabilities and complexity, and we train them with different amo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Patch-based techniques in medical imaging : third International Workshop, Patch-MI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Proceedings. Patch-MI (Workshop)

دوره 10530  شماره 

صفحات  -

تاریخ انتشار 2017